34 ${ }^{\text {th }}$ Indian National Mathematical Olympiad-2019

Date of Examination: 20 th January, 2019

SOLUTIONS

1. Let ABC be a triangle with $\angle \mathrm{BAC}>90^{\circ}$. Let D be a point on the segment BC and E be a point on the line $A D$ such that $A D$ is tangent to the circumcircle of triangle $A C D$ at A and $B E$ is perpendicular to AD . Given that $\mathrm{CA}=\mathrm{CD}$ and $\mathrm{AE}=\mathrm{CE}$, determine $\angle \mathrm{BCA}$ in degrees.

Sol. Construction : Extend
AE to meet the circumcircle of $\triangle \mathrm{ABC}$ at F
Claim : We prove that E is the circumcentre of $\triangle A B C$
Let $\angle \mathrm{BAD}=\theta$ then $\angle \mathrm{ACD}=\theta($ By alternate segment theorem $)$
Join $\overline{\mathrm{BF}}$, we have
$\angle \mathrm{BCA}=\angle \mathrm{AFB}=\theta($ Angle made by $\overline{\mathrm{AB}})$
\therefore We have $\mathrm{AB}=\mathrm{BF} \Rightarrow \triangle \mathrm{ABF}$ is isosceless
and $\mathrm{BE} \perp \mathrm{AF} \Rightarrow \mathrm{E}$ is mid point of AF

$\therefore \quad \mathrm{AE}=\mathrm{EF}$ and $\mathrm{AE}=\mathrm{CE}$ (given)
$\therefore \quad \mathrm{AE}=\mathrm{EF}=\mathrm{CE}$
$\Rightarrow E$ is the circum centre of $\triangle A B C$
$\therefore \angle \mathrm{ABF}=90^{\circ}[\mathrm{AF}$ is diameter]
$\therefore \quad 180-2 \theta=90^{\circ}$
$90^{\circ}=2 \theta$

$$
\begin{gathered}
\theta=45^{\circ} \\
\therefore \quad \angle \mathrm{BCA}=45^{\circ}
\end{gathered}
$$

2. Let $A_{1} B_{1} C_{1} D_{1} E_{1}$ be a regular pentagon. For $2 \leq n \leq 11$, let $A_{n} B_{n} C_{n} D_{n} E_{n}$ be the pentagon whose vertices are the midpoints of the sides of $A_{n-1} B_{n-1} C_{n-1} D_{n-1} E_{n-1}$. All the 5 vertices of each of the 11 pentagons are arbitrarily coloured red or blue. Prove that four points among these 55 points have the same colour and form the vertices of a cyclic quadrilateral.

Sol. Let P_{i} be the polygon $\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}$ and O be the centre of the polygon
$\Rightarrow \mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{7}, \mathrm{P}_{9}, \mathrm{P}_{11}$ have the same orientation w.r.t. O
Let C_{i} be the colour dominating in polygon P : [Which means which has atleast 3 of same colour]
Now in $\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{7}, \mathrm{P}_{9}, \mathrm{P}_{11}$, atleast three will have colour with same P_{i}
Let them be $P_{1_{1}}, P_{1_{2}}, P_{1_{3}}$
Now the C_{i} for these three be red (W. L. O. G.)
Now $P_{1_{1}}$ has 3 vertices of of same colour let them be $V_{1_{1}}, V_{1_{2}}, V_{1_{3}}$
Compare the vertices of $\mathrm{P}_{1_{1}}, \mathrm{P}_{1_{2}}$

If any of $V_{2_{4}}, V_{2_{5}}$ is not red then $\exists 2$ of $V_{2_{1}}, V_{2_{2}}, V_{2_{3}}$
which are red if they are $V_{1_{1}}, V_{1_{2}}$ then
$V_{1_{1}}, V_{1_{2}}, V_{2_{1}}, V_{2_{2}}$ is cyclic
so $V_{2_{4}}, V_{2_{5}}$ should be red
similarly $\mathrm{V}_{3_{4}}, \mathrm{~V}_{3_{5}}$ are red
Now we got $\mathrm{V}_{24}, \mathrm{~V}_{25}, \mathrm{~V}_{3_{4}}, \mathrm{~V}_{3_{5}}$ are cyclic and red
So we can find a cyclic quadrilateral.
Solution 2 : Consider a regular triangle in the plane ABC , whose vertices are coloured using only two colours Red and Blue.
then by PHP, two of the vertices must have same colour (say A \& B)
Now if we consider a regular pentagon then by using above result, we can assure that 3 vertices of pentagon is in Red and 2 vertices are blue and vice versa.

Now, we will analyse cases by case
Case-1 : When $4^{\text {th }}$ vertices will have some colour as 3 vertices, then we are done, as any 4 vertices of a regular pentagon will form a cyclic quadrilateral having all the 4 vertices same coloured.

Case-2 : Any of the 3 vertices Red and 2 are Blue coloured
Now, observe that in any pentagon two of the vertices will have same colour and it is also clear that, for this case we will have 6 pentagons (i.e. $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}, 7^{\text {th }}, 9^{\text {th }}$ and $11^{\text {th }}$ pentagon).

So, we have 6 such pantagon in which we will get 5 set of parallel lines (parallel to original pentagon)

Here $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ are 5 set of parallel lines
So, once we consider there 5 set of parallel lines and we have six such lines (including L_{0}) then by PHP, We will get 4 points having same colour and an isosceles trapezium which will be cyclic and hence we are done.

Case-3:2R and 3B: Same arguments as of case 2.
3. Let m, n be distinct positive integers.

Prove that $\operatorname{gcd}(m, n)+\operatorname{gcd}(m+1, n+1)+\operatorname{gcd}(m+2, n+2) \leq 2|m-n|+1$.
Further, determine when equality holds.
Sol. let $\mathrm{m}>\mathrm{n}$
$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\operatorname{gcd}(\mathrm{m}, \mathrm{m}-\mathrm{n})=\mathrm{a}$
$\operatorname{gcd}(m+1, n+1)=\operatorname{gcd}(m+1, m-n)=b$
$\operatorname{gcd}(m+2, n+2)=\operatorname{gcd}(m+2, m-n)=c$
$\Rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1, \operatorname{gcd}(\mathrm{~b}, \mathrm{c})=1, \operatorname{gcd}(\mathrm{a}, \mathrm{c}) / 2$

Case-1 :

If $\operatorname{gcd}(a, c)=1, d=m-n$
a/d, b/d, c/d
$\Rightarrow \mathrm{abc} / \mathrm{d}$
$\Rightarrow \mathrm{d} \geq \mathrm{abc}$
$\Rightarrow 2 \mathrm{~d}+1 \geq 2 \mathrm{abc}+1$
if atleast one of $a, b, c>1$ let it be b
$\Rightarrow 2 \mathrm{abc}+1=\mathrm{abc}+\mathrm{abc}+1$
$\geq 2 \mathrm{ac}+\mathrm{dbc}+1$
$\geq \mathrm{ac}+\mathrm{ac}+\mathrm{b}+1$
$\geq a+c+b+1$
$>\mathrm{a}+\mathrm{b}+\mathrm{c}$
so we are done
if all of $a, b, c=1$
then

$$
2 \mathrm{abc}+1=3=\mathrm{a}+\mathrm{b}+\mathrm{c}
$$

so we are done
Case-2 : $\operatorname{gcd}(\mathrm{a}, \mathrm{c})=2$

$$
\text { Now } \mathrm{a}=2 \mathrm{a}^{\prime}, \mathrm{c}=2 \mathrm{c}^{\prime} \Rightarrow \operatorname{gcd}\left(\mathrm{a}^{\prime} \mathrm{c}^{\prime}\right)=1
$$

$\Rightarrow 2 a^{\prime} \mathrm{bc} / \mathrm{d} \Rightarrow \mathrm{d} \geq 2 \mathrm{a}^{\prime} \mathrm{bc} c^{\prime}$

so equality holds when $\mathrm{a}=\mathrm{b}=\mathrm{c}=1 \Rightarrow \mathrm{a}^{\prime}=\mathrm{c}^{\prime}=1, \mathrm{~b}=1$

$$
\mathrm{d}=\mathrm{abc}
$$

which means at
$|\mathrm{m}-\mathrm{n}|=1$; for m, n consecutive positive integers
$|\mathrm{m}-\mathrm{n}|=2$ and m, n are even positive integers
4. Let n and M be positive integers such that $M>n^{n-1}$. Prove that there are n distinct primes $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \ldots, \mathrm{p}_{\mathrm{n}}$ such that p_{j} divides $\mathrm{M}+\mathrm{j}$ for $1 \leq \mathrm{j} \leq \mathrm{n}$.
Sol. $\mathrm{n}, \mathrm{m} \in \mathrm{I}^{+}$,
$\mathrm{M}>\mathrm{n}^{\mathrm{n}-1}, \mathrm{n} \rightarrow$ distinct primes
$P_{1}, P_{2}, \ldots \ldots P_{n}$ such that p_{j} divides $M+j$ for $i \leq j \leq n$
Case-1 : If $M+j$ has atleast ' n ' prime divisiors then p_{j} divides $m+j$ for $\mathrm{i} \leq \mathrm{j}$ for at least ' n ' distinct primes.
Case-2 : When $m+j$ has $n-1$ or less prime divisors,
Let $\mathrm{M}+\mathrm{j}=\mathrm{P}_{1}^{\mathrm{m}_{1}} . \mathrm{P}_{2}^{\mathrm{m}_{2}} \ldots \ldots . \mathrm{P}_{\mathrm{t}}^{\mathrm{m}_{\mathrm{t}}}$ where $\mathrm{P}_{1}, \mathrm{P}_{2} \ldots . . \mathrm{P}_{\mathrm{t}}$ are main distinct $\mathrm{t} \leq \mathrm{n}-1$

Claim :

Let us assume that for $\mathrm{P}_{\mathrm{i}}, \mathrm{P}^{\mathrm{n}_{\mathrm{i}}}$ is maximum,
Suppose ' P^{\prime} is chosen for $\mathrm{M}+\mathrm{i} \& \mathrm{M}+\mathrm{j} \& \mathrm{P}^{\mathrm{m}} \& \mathrm{P}^{\mathrm{n}}$ divides $\mathrm{M}+\mathrm{i} \& \mathrm{M}+\mathrm{j}$
when $n \geq m$
$\Rightarrow \mathrm{P}^{\mathrm{m}}$ divides $(\mathrm{m}+\mathrm{j})-(\mathrm{m}+\mathrm{i})=\mathrm{j}-\mathrm{i} \leq \mathrm{n}-1$
but $\mathrm{P}^{\mathrm{m}} \geq(\mathrm{m}+\mathrm{j})^{\frac{1}{\mathrm{n}-1}} \geq\left(\mathrm{n}^{\mathrm{n}-1}\right)^{\frac{1}{\mathrm{n}-1}}=\mathrm{n}$
Which leads to a contradiction.
5. Let $A B$ be a diameter of a circle Γ and let C be a point on Γ different from A and B. Let D be the foot of perpendicular from C on to $A B$. Let K be a point of the segment $C D$ such that $A C$ is equal to the semiperimeter of the triangle ADK. Show that the excircle of triangle ADK opposite A is tangent to Γ.
Sol. Since if two circles touch each other then difference between their centre is the difference between their radii if two circle touch internally
Our aim is to show $\mathrm{OI}_{\mathrm{A}}=\mathrm{R}-\mathrm{r}$
Let $\mathrm{AD}=\mathrm{a}, \mathrm{AK}=\mathrm{c}, \mathrm{KD}=\mathrm{b}$
let $A C=x, X I_{A}=r, x=\frac{a+b+c}{2}$
Since exradius $\triangle A D K$ is $r=\frac{K D+A K-A D}{2}$

Also $\quad O X=|A D+D X-A O|=|a+r-R|$
$\mathrm{OX}=|\mathrm{x}-\mathrm{R}|$
In $\Delta \mathrm{OI}_{\mathrm{A}} \mathrm{X} \quad \Rightarrow \mathrm{OI}_{\mathrm{A}}^{2}=\mathrm{OX}^{2}+\mathrm{XI}_{\mathrm{A}}^{2}$
$=(\mathrm{x}-\mathrm{R})^{2}+\mathrm{r}^{2}$
$=\mathrm{x}^{2}+\mathrm{R}^{2}-2 \mathrm{xR}+\mathrm{r}^{2}$
$=R^{2}+r^{2}+2 a R-2 x R$, from (A)
$R^{2}+r^{2}-2 R(x-a)=R^{2}+r^{2}-2 r R$
$\mathrm{OI}_{\mathrm{A}}{ }^{2}=(\mathrm{R}-\mathrm{r})^{2}$
$\therefore \mathrm{OI}_{\mathrm{A}}=\mathrm{R}-\mathrm{r}$
6. Let f be a function defined from the set $\{(x, y): x, y$ real, $x y \neq 0\}$ to the set of all positive real numbers such that
(i) $f(\mathrm{xy}, \mathrm{z})=f(\mathrm{x}, \mathrm{z}) f(\mathrm{y}, \mathrm{z})$, for all $\mathrm{x}, \mathrm{y} \neq 0$;
(ii) $f(\mathrm{x}, 1-\mathrm{x})=1$, for all $\mathrm{x} \neq 0,1$.

Prove that
(a) $f(\mathrm{x}, \mathrm{x})=f(\mathrm{x},-\mathrm{x})=1$, for all $\mathrm{x} \neq 0$;
(b) $f(\mathrm{x}, \mathrm{y}) f(\mathrm{y}, \mathrm{x})=1$, for all $\mathrm{x}, \mathrm{y} \neq 0$.

Sol. Given information is insufficient to prove the required results. One such counter example is as follows. Counter example :
$f(x, y)=\left\{\begin{array}{cl}g(x) & , y=c \\ 1, & y \neq c\end{array}\right.$
g is some multiplicative function such that $\mathrm{g}(1-\mathrm{c})=1$
Now, $g(x y)=g(x) \cdot g(y)$
$\Rightarrow f(\mathrm{xy}, \mathrm{z})=f(\mathrm{x}, \mathrm{z}) \cdot f(\mathrm{y}, \mathrm{z})$

$$
f(x, 1-x)=\left\{\begin{array}{cll}
g(x) & , & x=1-c \\
1 & , & x \neq 1-c
\end{array}=1\right.
$$

One such $g(x)=x^{2}$, and take $c=2$, where c is some real number. Here
for $1-\mathrm{x} \neq \mathrm{c}, \mathrm{f}(\mathrm{x}, 1-\mathrm{x})=1$
and for $1-x=c$ or $x=1-c, f(x, 1-x)=f(1-c, c)=g(1-c)=1$
Hence $f(x, 1-x)=1$
Now observe:
$\mathrm{f}(2,2)=\mathrm{g}(2)=2^{2} \neq 1$
Also for $\mathrm{x}=\mathrm{y}=2$
$f(x, y) f(y, x)=(f(2,2))^{2}=(g(2))^{2}=16 \neq 1$
Hence the given question is incorrect.

