

34th Indian National Mathematical Olympiad-2019

Date of Examination : 20th January, 2019

SOLUTIONS

- Let ABC be a triangle with ∠BAC > 90°. Let D be a point on the segment BC and E be a point on the line AD such that AD is tangent to the circumcircle of triangle ACD at A and BE is perpendicular to AD. Given that CA = CD and AE = CE, determine ∠BCA in degrees.
- **Sol.** Construction : Extend

AE to meet the circumcircle of $\triangle ABC$ at F

Claim : We prove that E is the circumcentre of $\triangle ABC$

Let $\angle BAD = \theta$ then $\angle ACD = \theta$ (By alternate segment theorem)

Join \overline{BF} , we have

 $\angle BCA = \angle AFB = \theta$ (Angle made by \overline{AB})

 \therefore We have AB = BF $\Rightarrow \triangle ABF$ is isosceless

and $BE \perp AF \Rightarrow E$ is mid point of AF

- \therefore AE = EF and AE = CE (given)
- \therefore AE = EF = CE
- \Rightarrow E is the circum centre of $\triangle ABC$
- $\therefore \ \angle ABF = 90^{\circ} \ [AF is diameter]$
- $\therefore 180 2\theta = 90^{\circ}$

 $90^{\circ} = 2\theta$

$$\theta = 45^{\circ}$$

- $\therefore \angle BCA = 45^{\circ}$
- 2. Let $A_1B_1C_1D_1E_1$ be a regular pentagon. For $2 \le n \le 11$, let $A_nB_nC_nD_nE_n$ be the pentagon whose vertices are the midpoints of the sides of $A_{n-1}B_{n-1}C_{n-1}D_{n-1}E_{n-1}$. All the 5 vertices of each of the 11 pentagons are arbitrarily coloured red or blue. Prove that four points among these 55 points have the same colour and form the vertices of a cyclic quadrilateral.

Sol. Let P_i be the polygon $A_i B_i C_i D_i E_i$ and O be the centre of the polygon $\Rightarrow P_1, P_3, P_7, P_9, P_{11}$ have the same orientation w.r.t. O Let C_i be the colour dominating in polygon P : [Which means which has atleast 3 of same colour] Now in $P_1, P_3, P_7, P_9, P_{11}$, atleast three will have colour with same P_i Let them be $P_{1_1}, P_{1_2}, P_{1_3}$ Now the C_i for these three be red (W. L. O. G.) Now P_{1_1} has 3 vertices of of same colour let them be $V_{1_1}, V_{1_2}, V_{1_3}$ Compare the vertices of P_{1_1}, P_{1_2} If any of V_{2_4} , V_{2_5} is not red then $\exists 2$ of V_{2_1} , V_{2_2} , V_{2_3} which are red if they are V_{1_1} , V_{1_2} then V_{1_1} , V_{1_2} , V_{2_1} , V_{2_2} is cyclic so V_{2_4} , V_{2_5} should be red similarly V_{3_4} , V_{3_5} are red Now we got V_{2_4} , V_{2_5} , V_{3_4} , V_{3_5} are cyclic and red So we can find a cyclic quadrilateral.

Solution 2 : Consider a regular triangle in the plane ABC, whose vertices are

coloured using only two colours Red and Blue.

then by PHP, two of the vertices must have same colour (say A & B)

Now if we consider a regular pentagon then by using above result, we can assure that 3 vertices of pentagon is in Red and 2 vertices are blue and vice versa.

Now, we will analyse cases by case

Case-1: When 4th vertices will have some colour as 3 vertices, then we are done, as any 4 vertices of a regular pentagon will form a cyclic quadrilateral having all the 4 vertices same coloured.

R

Case-2 : Any of the 3 vertices Red and 2 are Blue coloured

Now, observe that in any pentagon two of the vertices will have same colour and it is also clear that, for this case we will have 6 pentagons (i.e. 1st, 3rd, 5th, 7th, 9th and 11th pentagon).

So, we have 6 such pantagon in which we will get 5 set of parallel lines (parallel to original pentagon)

Here L_1 , L_2 , L_3 , L_4 , L_5 are 5 set of parallel lines

So, once we consider there 5 set of parallel lines and we have six such lines (including L_0) then by PHP, We will get 4 points having same colour and an isosceles trapezium which will be cyclic and hence we are done.

Case-3 : 2R and 3B : Same arguments as of case 2.

```
3.
       Let m, n be distinct positive integers.
       Prove that gcd(m, n) + gcd(m + 1, n + 1) + gcd(m + 2, n + 2) \le 2|m - n| + 1.
       Further, determine when equality holds.
Sol. let m > n
       gcd (m, n) = gcd(m, m - n) = a
       gcd (m + 1, n + 1) = gcd(m + 1, m - n) = b
       gcd (m + 2, n + 2) = gcd (m + 2, m - n) = c
       \Rightarrow gcd(a, b) = 1, gcd(b, c) = 1, gcd(a, c) / 2
       Case-1 :
       If gcd(a, c) = 1, d = m - n
           a/d, b/d, c/d
           \Rightarrow abc/d
           \Rightarrow d \geq abc
       \Rightarrow 2d + 1 \geq 2abc + 1
           if atleast one of a, b, c > 1 let it be b
       \Rightarrow 2abc + 1 = abc + abc + 1
                      \geq 2ac + dbc + 1
                      \geq ac + ac + b + 1
                      \geq a + c + b + 1
                      > a + b + c
       so we are done
       if all of a, b, c = 1
       then
           2abc + 1 = 3 = a + b + c
                                  so we are done
       Case-2 : gcd (a, c) = 2
           Now a = 2a', c = 2c' \Rightarrow gcd(a'c') = 1
       \Rightarrow 2a'bc'/d \Rightarrow d \geq 2a'bc'
                                  2d + 1 \ge 4a'bc' + 1
       Now
       if
                                  b \ge 2
                                  4a'b'c + 1 \ge 2a'c' + 1 + 2a'c'b
       then
                                             \geq 4a'c' + 1 + 2b
                                             \geq 2a' + 2c' + 1 + 2b
                                             > 2a' + 2c' + b = a + b + c
      if b = 1
                                  2d + 1 \ge 4a'c' + 1 \ge 2a' + 2c' + b = a + b + c
       so equality holds when a = b = c = 1 \implies a' = c' = 1, b = 1
           d = abc
       which means at
       |m - n| = 1; for m, n consecutive positive integers
       |m - n| = 2 and m,n are even positive integers
```

- 4. Let n and M be positive integers such that $M > n^{n-1}$. Prove that there are n distinct primes $p_1, p_2, p_3, ..., p_n$ such that p_i divides M + j for $1 \le j \le n$.
- $\textbf{Sol.} \quad n,\,m\,\in\,I^{\scriptscriptstyle +},$
 - $M > n^{n-1}, n \rightarrow distinct primes$

 P_1, P_2, \dots, P_n such that p_i divides M + j for $i \le j \le n$

Case-1 : If M + j has atleast 'n' prime divisiors then p_j divides m + j

for $i \leq j$

for at least 'n' distinct primes.

Case-2 : When m + j has n - 1 or less prime divisors,

Let
$$M + j = P_1^{m_1} \cdot P_2^{m_2} \cdot \dots \cdot P_t^{m_t}$$
 where $P_1, P_2 \cdot \dots \cdot P_t$ are main distinct $t \le n - 1$

Claim :

Let us assume that for P_i , P^{n_i} is maximum,

Suppose 'P' is chosen for M + i & M + j & P^m & Pⁿ divides M + i & M + j

when $n \ge m$

$$\Rightarrow$$
 P^m divides (m + j) - (m + i) = j - i \le n - 1

but
$$P^m \ge (m+j)^{\frac{1}{n-1}} \ge (n^{n-1})^{\frac{1}{n-1}} = n$$

Which leads to a contradiction.

- 5. Let AB be a diameter of a circle Γ and let C be a point on Γ different from A and B. Let D be the foot of perpendicular from C on to AB. Let K be a point of the segment CD such that AC is equal to the semiperimeter of the triangle ADK. Show that the excircle of triangle ADK opposite A is tangent to Γ .
- Sol. Since if two circles touch each other then difference between their centre is the difference between their radii if two circle touch internally

K – AD

Our aim is to show
$$OI_A = R - r$$

Let $AD = a$, $AK = c$, $KD = b$
let $AC = x$, $XI_A = r$, $x = \frac{a+b+c}{2}$

Since exradius $\triangle ADK$ is r = -

$$\therefore r = \frac{b+c-a}{2} = \frac{b+c+a-2a}{2} = \frac{b+c+a}{2} - a$$

Also

$$AC^{2} = AD \times AB$$

$$x^{2} = 2aR \qquad \dots (A)$$
Also

$$OX = |AD + DX - AO| = |a + r - R|$$

$$OX = |x - R|$$

$$\Rightarrow OI_{A}^{2} = OX^{2} + XI_{A}^{2}$$

$$= (x - R)^{2} + r^{2}$$

$$= x^{2} + R^{2} - 2xR + r^{2}$$

$$= R^{2} + r^{2} + 2aR - 2xR, \text{ from } (A)$$

$$R^{2} + r^{2} - 2R(x - a) = R^{2} + r^{2} - 2rR$$

$$OI_{A}^{2} = (R - r)^{2}$$

$$\therefore OI_{A} = R - r$$

6. Let f be a function defined from the set $\{(x, y) : x, y \text{ real}, xy \neq 0\}$ to the set of all positive real numbers such that

Prove that

(a) f(x, x) = f(x, -x) = 1, for all $x \neq 0$;

(b)
$$f(x, y)f(y, x) = 1$$
, for all x, $y \neq 0$.

Sol. Given information is insufficient to prove the required results. One such counter example is as follows. Counter example :

$$f(\mathbf{x}, \mathbf{y}) = \begin{cases} g(\mathbf{x}) & , & \mathbf{y} = \mathbf{c} \\ 1 & , & \mathbf{y} \neq \mathbf{c} \end{cases}$$

g is some multiplicative function such that g(1 - c) = 1

Now, g(xy) = g(x).g(y)

$$\Rightarrow$$
 $f(xy, z) = f(x, z).f(y, z)$

$$f(\mathbf{x}, 1 - \mathbf{x}) = \begin{cases} g(\mathbf{x}) &, & \mathbf{x} = 1 - \mathbf{c} \\ 1 &, & \mathbf{x} \neq 1 - \mathbf{c} \end{cases} = 1$$

One such $g(x) = x^2$, and take c = 2, where c is some real number. Here

for $1 - x \neq c$, f(x, 1 - x) = 1

and for 1 - x = c or x = 1 - c, f(x, 1 - x) = f(1 - c, c) = g(1 - c) = 1

Hence f(x, 1 - x) = 1

Now observe:

 $f(2, 2) = g(2) = 2^2 \neq 1$

Also for x = y = 2

 $f(x, y) f(y, x) = (f(2, 2))^2 = (g(2))^2 = 16 \neq 1$

Hence the given question is incorrect.