PRE REGIONAL MATHEMATICAL OLYMPIAD (PRMO) - 2018

Date: 19/08/2018

Max. Marks: 102

1. A book is published in three volumes, the pages being numbered from 1 onwards. The page numbers are continued from the first volume to the second volume to the third. The number of pages in the second volume is 50 more than that in the first volume, and the number pages in the third volume is one and a half times that in the second. The sum of the page numbers on the first pages of the three volumes is 1709 . If n is the last page number, what is the largest prime factor of n ?

Ans. (17)
Sol. Let the number of pages in the first book be x
\Rightarrow In second book $x+50$ and in third book $\frac{3}{2}(x+50)$
$\Rightarrow 1+(\mathrm{x}+1)+(\mathrm{x}+\mathrm{x}+50+1)=1709$
$\Rightarrow 3 x+53=1709$
$\Rightarrow 3 x=1656$
$\Rightarrow \quad \mathrm{x}=552$
\Rightarrow Last page number $=x+x+50+\frac{3}{2}(x+50)$
$=552+552+50+\frac{3}{2}(552+50)$
$=2057$
\Rightarrow Largest prime factor of $2057=17$
2. In a quadrilateral $A B C D$, it is given that $A B=A D=13, B C=C D=20, B D=24$. If r is the radius of the circle inscribable in the quadrilateral, then what is the integer closest to r ?
Ans. (08)

Sol.

$[\mathrm{ABD}]=\sqrt{25(25-13)(25-13)(25-24)}=60$,
and $[\mathrm{DBC}]=\sqrt{32(32-20)(30-20)(32-24)}=192$,
$\Rightarrow \quad[\mathrm{ABCD}]=252$
Now $[\mathrm{ABCD}]=\frac{13 \mathrm{r}}{2}+\frac{13 \mathrm{r}}{2}+\frac{20 \mathrm{r}}{2}+\frac{20 \mathrm{r}}{2}=252$
$\Rightarrow 33 \mathrm{r}=252$
$\Rightarrow \mathrm{r}=\frac{252}{33}=7.63$
\Rightarrow Nearest integer $=8$
3. Consider all 6 -digit numbers of the form abccba where b is odd. Determine the number of all such 6 -digit numbers that are divisible by 7 .
Ans. (70)
Sol. abccba is divisible by 7
if abc - cba is divisible by 7
$\Rightarrow \mathrm{abc}-\mathrm{cba}=99(\mathrm{a}-\mathrm{c})=7 \mathrm{M} \Rightarrow 71(\mathrm{a}-\mathrm{c})$
So, (a, c) $=\{(9,2),(8,1),(7,0),(2,9),(1,8),(9,9),(8,8),(7,7),(6,6),(5,5),(4,4),(3,3),(2,2),(1,1)\}$
No of pair of $(\mathrm{a}, \mathrm{b})=14$
Also, no of b's can be $=5$
\therefore Total number of 6 digits number $=14 \times 5=70$
4. The equation $166 \times 56=8590$ is valid in some base $\mathrm{b} \geq 10$ (that is, $1,6,5,8,9,0$ are digits in base b in the above equation). Find the sum of all possible values of $b \geq 10$ satisfying the equation.
Ans. (12)
Sol. Let base be ' n '
$\Rightarrow 166=1 . \mathrm{n}^{2}+6 . \mathrm{n}^{1}+6 . \mathrm{n}^{0} ; 56=5 . \mathrm{n}^{1}+6 . \mathrm{n}^{0}$ and $8590=8 \mathrm{n}^{3}+5 \mathrm{n}^{2}+9 . \mathrm{n}^{1}+0 . \mathrm{n}^{0}$
Now $166 \times 56=8590$
$\Rightarrow\left(\mathrm{n}^{2}+6 \mathrm{n}+6\right) \times(5 \mathrm{n}+6)=8 \mathrm{n}^{3}+5 \mathrm{n}^{2}+9 \mathrm{n}$
$\Rightarrow 3 \mathrm{n}^{3}-31 \mathrm{n}^{2}-57 \mathrm{n}-36=0$
$\Rightarrow(\mathrm{n}-12)\left(3 \mathrm{n}^{2}+5 \mathrm{n}+3\right)=0$
$\Rightarrow \mathrm{n}=12$
So base $\mathrm{n}=12$
5. Let $A B C D$ be a trapezium in which $A B \| C D$ and $A D \perp A B$. Suppose $A B C D$ has an incircle which touches AB at Q and CD at P . Given that $\mathrm{PC}=36$ and $\mathrm{QB}=49$, find PQ .
Ans. (84)
Sol.

$\mathrm{CP}=\mathrm{TQ}=36 \Rightarrow \mathrm{BT}=49-36=13 ; \mathrm{BC}=\mathrm{BS}+\mathrm{SC}=\mathrm{BQ}+\mathrm{CP}=49+36=85$
In $\triangle \mathrm{BTC}, 85^{2}=13^{2}+(2 \mathrm{x})^{2}$
$\Rightarrow(2 \mathrm{x})^{2}=7056 \Rightarrow 2 \mathrm{x}=84$
$\Rightarrow \mathrm{PQ}=84 \mathrm{~cm}$
6. Integers a, b, c satisfy $a+b-c=1$ and $a^{2}+b^{2}-c^{2}=-1$. What is the sum of all possible values of $a^{2}+b^{2}+c^{2}$?
Ans. (18)

Sol. From given equations by eliminating 'c', we get,
$a^{2}+b^{2}-(a+b-1)^{2}=-1$
$\Rightarrow-2 \mathrm{ab}+2(\mathrm{a}+\mathrm{b})-1=-1$
$\Rightarrow \mathrm{ab}-\mathrm{a}-\mathrm{b}=0$
$\Rightarrow(a-1)(b-1)=1$
$\Rightarrow \mathrm{a}-1=1$ and $\mathrm{b}-1=1 \Rightarrow \mathrm{a}=\mathrm{b}=2 \Rightarrow \mathrm{c}=3$
or $\mathrm{a}-1=-1$ and $\mathrm{b}-1=-1 \Rightarrow \mathrm{a}=\mathrm{b}=0 \Rightarrow \mathrm{c}=-1$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=17$ or 1
\Rightarrow required sum $=17+1=18$
7. A point P in the interior of a regular hexagon is at distance $8,8,16$ units from three consecutive vertices of the hexagon, respectively. If r is radius of the circumscribed circle of the hexagon, what is the integer closest to r ?
Ans. (14)
Sol. $\quad \mathrm{ON}=\mathrm{r} \cos 30^{\circ}=\frac{\mathrm{r} \sqrt{3}}{2}$
$\triangle \mathrm{PCO} \sim \triangle \mathrm{PBN}$
$\Rightarrow \frac{\mathrm{PO}}{\mathrm{PN}}=\frac{\mathrm{PC}}{\mathrm{PB}}=\frac{16}{8}$

$\Rightarrow \mathrm{PO}=2 \mathrm{PN}$
$\Rightarrow \mathrm{PO}=\frac{2}{3} \mathrm{ON}=\frac{2}{3} \frac{\sqrt{3} \mathrm{r}}{2}=\frac{\mathrm{r}}{\sqrt{3}}$
In $\triangle \mathrm{PCO}, \mathrm{r}^{2}+\frac{\mathrm{r}^{2}}{3}=16^{2}$
$\Rightarrow \quad \mathrm{r}=\sqrt{192}$
\Rightarrow closest integer to r is 14 .
8. Let AB be a chord of a circle with centre O . Let C be a point on the circle such that $\angle \mathrm{ABC}=30^{\circ}$ and O lies inside the triangle ABC . Let D be a point on AB such that $\angle \mathrm{DCO}=\angle \mathrm{OCB}=20^{\circ}$. Find the measure of $\angle \mathrm{CDO}$ in degrees.
Ans. (80)
Sol. $\angle \mathrm{ABC}=30^{\circ}$
$\Rightarrow \mathrm{AOC}=60^{\circ}$
Now as $\mathrm{OC}=\mathrm{OA} \Rightarrow \triangle \mathrm{OAC}$ is equilateral
$\Rightarrow \angle \mathrm{CAO}=\angle \mathrm{ACO}=60^{\circ}$
$\Rightarrow \angle \mathrm{ACD}=60^{\circ}-20^{\circ}=40^{\circ}$
Join OB , since $\mathrm{OC}=\mathrm{OB}$ so
$\angle \mathrm{OBC}=\angle \mathrm{OCB}=20^{\circ}$
$\Rightarrow \angle \mathrm{OBA}=10^{\circ} \Rightarrow \angle \mathrm{OAB}=10^{\circ} \Rightarrow \angle \mathrm{DAC}=70^{\circ}$
In $\triangle \mathrm{ACD}$ by ASP
$\angle \mathrm{CDA}=70^{\circ}$

$\Rightarrow \angle \mathrm{CDA}=\angle \mathrm{CAD}=70^{\circ}$
$\Rightarrow \mathrm{CD}=\mathrm{CA}=\mathrm{CO}$
In $\triangle \mathrm{CDO}, \mathrm{CD}=\mathrm{CO}$ and $\angle \mathrm{DCO}=20^{\circ}$,
$\Rightarrow \angle \mathrm{CDO}=\frac{180^{\circ}-20^{\circ}}{2}=80^{\circ}$
9. Suppose a, b are integers and $a+b$ is a root of $x^{2}+a x+b=0$. What is the maximum possible values of b^{2} ?

Ans. (81)
Sol. As $a+b$ is a root of $x^{2}+a x+b=0,(a+b)^{2}+a(a+b)+b=0$
$\Rightarrow 2 \mathrm{a}^{2}+3 \mathrm{ba}+\mathrm{b}^{2}+\mathrm{b}=0$
$\Rightarrow a=\frac{-3 b \pm \sqrt{b^{2}-8 b}}{4}$
So, $b^{2}-8 b$ must be a perfect square for some whole number $=k^{2}$ (say), $k \in \mathbb{N}_{0}$
$\Rightarrow(b-4)^{2}-16=k^{2}$
$\Rightarrow(\mathrm{b}-4)^{2}-\mathrm{k}^{2}=16$
$\Rightarrow(\mathrm{b}-4-\mathrm{k})(\mathrm{b}-4+\mathrm{k})=16$
Now we have following four possibilities :
(i) $\mathrm{b}-4+\mathrm{k}=8, \mathrm{~b}-4-\mathrm{k}=2 \Rightarrow(\mathrm{~b}, \mathrm{k})=(9,3)$
(ii) $\mathrm{b}-4+\mathrm{k}=4, \mathrm{~b}-4-\mathrm{k}=4 \Rightarrow(\mathrm{~b}, \mathrm{k})=(8,0)$
(iii) $\mathrm{b}-4+\mathrm{k}=-2, \mathrm{~b}-4-\mathrm{k}=-8 \Rightarrow \quad(\mathrm{~b}, \mathrm{k})=(-1,3)$
(iv) $\mathrm{b}-4+\mathrm{k}=-4, \quad \mathrm{~b}-4-\mathrm{k}=-4 \Rightarrow \quad(\mathrm{~b}, \mathrm{k})=(0,0)$

Now maximum possible $b=9$ and corresponding $a=\frac{-27 \pm 3}{4}=-6,-\frac{15}{2}$
As $b=9, a=-6$ satisfy all constraints, maximum $b^{2}=81$.
10. In a triangle $A B C$, the median from B to $C A$ is perpendicular to the median from C to $A B$. If the median from A to $B C$ is 30 , determine $\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{2}\right) / 100$.
Ans. (24)
Sol. $\mathrm{CE}^{2}=(2 \mathrm{x})^{2}+\mathrm{y}^{2}$

$$
=4 x^{2}+y^{2}
$$

and $\mathrm{BF}^{2}=(2 \mathrm{y})^{2}+\mathrm{x}^{2}$

$$
=4 y^{2}+x^{2}
$$

Also $\quad \mathrm{CG}^{2}+\mathrm{BG}^{2}=\mathrm{BC}^{2}$
$\Rightarrow 4 x^{2}+4 y^{2}=20^{2}$
or $x^{2}+y^{2}=100$
Now $A C^{2}=(2 C E)^{2}=4\left(4 x^{2}+y^{2}\right)$
and $A B^{2}=(2 B F)^{2}=4\left(4 y^{2}+x^{2}\right)$

$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}=20\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+20^{2}=2400$
$\Rightarrow \frac{1}{100}\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=24$
11. There are several tea cups in the kitchen, some with handles and the others without handles. The number of ways of selecting two cups without a handle and three with a handle is exactly 1200 . What is the maximum possible number of cups in the kitchen?
Ans. (29)
Sol. Let the no. of cups with handles be x and no. of cups without handle be y
$\binom{x}{2}\binom{y}{3}=1200$
As $\left.\binom{y}{3} \right\rvert\, 1200$
$\Rightarrow \quad y \leq 20 \quad\left(\mathrm{As}\binom{21}{3}=21 \times 20 \times 19=1330>1200\right)$
Also $\left.\binom{\mathrm{y}}{3}=\frac{\mathrm{y}(\mathrm{y}-1)(\mathrm{y}-2)}{3} \right\rvert\, 1200$
$\Rightarrow \quad \mathrm{y} \neq \mathrm{p}, \mathrm{p}+1, \mathrm{p}+2$, where p prime ≥ 7
$\Rightarrow \mathrm{y} \neq 7,8,9,11,12,13,14,15,17,18,19,20$
\Rightarrow Possible $y=3,4,5,6,10,16$
But $\mathrm{y} \neq 16$ as $7 \dagger\binom{\mathrm{y}}{3}$
After checking each value of y, we get
$y=4, x=25 \Rightarrow x+y=29$
and $y=10, x=5 \Rightarrow x+y=15$
and $y=5, x=16 \Rightarrow x+y=21$
$\Rightarrow \quad \operatorname{Max}(\mathrm{x}+\mathrm{y})=29$
12. Determine the number of 8 -tuples $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{8}\right)$ such that $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{8} \in\{1,-1\}$ and $\varepsilon_{1}+2 \varepsilon_{2}+3 \varepsilon_{3}+\ldots+8 \varepsilon_{8}$ is a multiple of 3 .
Ans. (88)
Sol. $\varepsilon_{1}+2 \varepsilon_{2}+3 \varepsilon_{3}+4 \varepsilon_{4}+5 \varepsilon_{5}+6 \varepsilon_{6}+7 \varepsilon_{7}+8 \varepsilon_{8} \equiv 0(\bmod 3)$
$\Rightarrow \varepsilon_{1}-\varepsilon_{2}+0+\varepsilon_{4}-\varepsilon_{5}+0+\varepsilon_{7}-\varepsilon_{8} \equiv 0(\bmod 3)$
$\Rightarrow \varepsilon_{1}+\varepsilon_{4}+\varepsilon_{7} \equiv \varepsilon_{2}+\varepsilon_{5}+\varepsilon_{8}(\bmod 3)$
Now $\varepsilon_{\mathrm{i}}+\varepsilon_{\mathrm{j}}+\varepsilon_{\mathrm{k}}=3 \equiv 0(\bmod 3) \Rightarrow 1$ way (each of them 1$)$
and $\varepsilon_{\mathrm{i}}+\varepsilon_{\mathrm{j}}+\varepsilon_{\mathrm{k}}=-3 \equiv 0(\bmod 3) \Rightarrow 1$ way (each of them -1$)$
and $\varepsilon_{\mathrm{i}}+\varepsilon_{\mathrm{j}}+\varepsilon_{\mathrm{k}}=1(\bmod 3) \Rightarrow 3$ ways (two of them 1 and one -1$)$
and $\varepsilon_{\mathrm{i}}+\varepsilon_{\mathrm{j}}+\varepsilon_{\mathrm{k}}=-1(\bmod 3) \Rightarrow 3$ ways (two of them -1 and one 1$)$
$\Rightarrow \varepsilon_{1}+\varepsilon_{4}+\varepsilon_{7} \equiv 0 \equiv \varepsilon_{2}+\varepsilon_{5}+\varepsilon_{8}(\bmod 3)$ in $2 \times 2=4$ ways
$\varepsilon_{1}+\varepsilon_{4}+\varepsilon_{7} \equiv 1 \equiv \varepsilon_{2}+\varepsilon_{5}+\varepsilon_{8}(\bmod 3)$ in $3 \times 3=9$ ways
$\varepsilon_{1}+\varepsilon_{4}+\varepsilon_{7} \equiv-1 \equiv \varepsilon_{2}+\varepsilon_{5}+\varepsilon_{8}(\bmod 3)$ in $3 \times 3=9$ ways
Number of ways to select $\left(\varepsilon_{1}, \varepsilon_{4}, \varepsilon_{7}, \varepsilon_{2}, \varepsilon_{5}, \varepsilon_{8}\right)$ is $4+9+9=22$ ways
Now $\varepsilon_{3}, \varepsilon_{6}$ can be -1 or $1 \Rightarrow$ there are $2 \times 2=4$ choices for $\varepsilon_{3}, \varepsilon_{6}$
\Rightarrow Total number of ways to select $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{7}, \varepsilon_{8}, \varepsilon_{9}\right)$ is $22 \times 4=88$ ways
13. In a triangle ABC , right-angled at A , the altitude through A and the internal bisector of $\angle \mathrm{A}$ have lengths 3 and 4 , respectively. Find the length of the medium through A.
Ans. (24)
Sol. $[\mathrm{ABC}]=\frac{1}{2} \mathrm{bc}=\frac{1}{2} \mathrm{a} \times 3$
$\Rightarrow \mathrm{bc}=3 \mathrm{a}$
$[\mathrm{ABN}]+[\mathrm{ANC}]=[\mathrm{ABC}]$
$\Rightarrow \frac{1}{2} \mathrm{c} \cdot 4 \sin 45^{\circ}+\frac{1}{2} \mathrm{~b} .4 \sin 45^{\circ}=\frac{1}{2} \mathrm{bc}$
$\Rightarrow \mathrm{b}+\mathrm{c}=\frac{1}{2 \sqrt{2}} \mathrm{bc}$
$\Rightarrow \mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{bc}=\frac{1}{8} \mathrm{~b}^{2} \mathrm{c}^{2}$
$\Rightarrow \mathrm{a}^{2}+6 \mathrm{a}=\frac{9}{8} \mathrm{a}^{2},($ from (i))

$\Rightarrow \mathrm{a}+6=\frac{9}{8} \mathrm{a} \quad(\mathrm{As} \mathrm{a} \neq 0)$
$\Rightarrow \mathrm{a}=48$
$\Rightarrow \mathrm{AM}=\mathrm{MB}=\mathrm{MC}=\frac{\mathrm{a}}{2}=24$
14. If $x=\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 89^{\circ}$ and $y=\cos 2^{\circ} \cos 6^{\circ} \cos 10^{\circ} \ldots \cos 86^{\circ}$, then what is the integer nearest to $\frac{2}{7} \log _{2}(\mathrm{y} / \mathrm{x})$?
Ans. (19)
Sol. $\mathrm{x}=\prod_{\mathrm{r}=1}^{89} \cos \mathrm{r}^{\circ}$
$\Rightarrow x=\sqrt{\prod_{r=1}^{89} \cos r^{\circ} \cos (89+1-r)}$
$\Rightarrow \quad x=\sqrt{\frac{1}{2^{89}} \prod_{\mathrm{r}=1}^{89} \sin 2 \mathrm{r}^{\circ}}$
$\Rightarrow \quad x=\sqrt{\frac{1}{2^{89}}\left(\prod_{r=1}^{44} \sin 2 r^{\circ}\right)^{2} \cdot \sin 90^{\circ}} \quad\left(\right.$ As $\left.\sin 2(89+1-r)=\sin \left(180^{\circ}-2 r\right)=\sin 2 r\right)$
$\Rightarrow \quad \mathrm{x}=\frac{1}{2^{44} \sqrt{2}} \prod_{\mathrm{r}=1}^{44} \sin 2 \mathrm{r}^{\circ}$
$\Rightarrow \quad \mathrm{x}=\frac{1}{2^{44} \sqrt{2}} \sqrt{\prod_{\mathrm{r}=1}^{44} \sin 2 \mathrm{r} \sin 2(44+1-\mathrm{r})}$
$\Rightarrow \quad \mathrm{x}=\frac{1}{2^{66} \sqrt{2}} \sqrt{\prod_{\mathrm{r}=1}^{44} \sin 4 \mathrm{r}}$
$\Rightarrow \quad x=\frac{1}{2^{66} \sqrt{2}} \sqrt{\left(\prod_{r=1}^{22} \sin 4 r\right)^{2}} \quad\left(\right.$ As $\left.\sin 4(44+1-r)=\sin \left(180^{\circ}-4 r\right)=\sin 4 r\right)$
$\Rightarrow \quad \mathrm{x}=\frac{1}{2^{66} \sqrt{2}} \prod_{\mathrm{r}=1}^{22} \sin 4 \mathrm{r}$
$=\frac{1}{2^{66} \sqrt{2}} \prod_{\mathrm{r}=1}^{22} \sin \left(92^{\circ}-4 \mathrm{r}\right)$
$=\frac{1}{2^{66} \sqrt{2}} \prod_{\mathrm{r}=1}^{22} \cos (4 \mathrm{r}-2)$
$\Rightarrow \quad \mathrm{x}=\frac{1}{2^{66} \sqrt{2}} \mathrm{y}$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}=2^{66+\frac{1}{2}} \Rightarrow \frac{2}{7} \log _{2} \frac{\mathrm{y}}{\mathrm{x}}=\frac{133}{2} \times \frac{2}{7}=19$
15. Let a and b be natural numbers such that $2 a-b, a-2 b$ and $a+b$ are all distinct squares. What is the smallest possible value of b ?
Ans. (21)
Sol. Let $2 \mathrm{a}-\mathrm{b}=\mathrm{x}^{2}$
and $a-2 b=y^{2}$
and $\mathrm{a}+\mathrm{b}=\mathrm{z}^{2}$
where $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{N}_{0}$
Now (ii) + (iii)
$\Rightarrow \quad 2 \mathrm{a}-\mathrm{b}=\mathrm{y}^{2}+\mathrm{z}^{2}$
$\Rightarrow x^{2}=y^{2}+z^{2}$
From (i) + (iii), $3 \mathrm{a}=\mathrm{x}^{2}+\mathrm{z}^{2}$
$\Rightarrow 3\left|\left(x^{2}+z^{2}\right) \Rightarrow 3\right| x$ and $3 \mid z$
From (iii) - (ii), $3 b=z^{2}-y^{2}$
$\Rightarrow 3\left|\left(z^{2}-y^{2}\right) \Rightarrow 3\right| y^{2}($ as $3 \mid z)$
$\Rightarrow 31 \mathrm{y}$
$\Rightarrow \mathrm{x}=3 \mathrm{x}_{1}, \mathrm{y}=3 \mathrm{y}_{1}, \mathrm{z}=3 \mathrm{z}_{1}$
$\Rightarrow \quad x_{1}^{2}=y_{1}^{2}+z_{1}^{2}$
(from (iv))
Let as assume every two of $\mathrm{z}_{1}, \mathrm{y}_{1}, \mathrm{x}_{1}$ are coprime $\Rightarrow \mathrm{z}_{1}, \mathrm{y}_{1}, \mathrm{x}_{1}$ is a primitive Pythagorean triplet
\Rightarrow out of y_{1} and z_{1} one even ≥ 4 and other odd ≥ 3
From (v), $b=3\left(z_{1}^{2}-y_{1}^{2}\right)=3\left(z_{1}+y_{1}\right)\left(z_{1}-y_{1}\right)$
Now we need $z_{1}+y_{1}$ and $z_{1}-y_{1}$ as small as possible $\Rightarrow \mathrm{z}_{1}=4, y_{1}=3 \Rightarrow x_{1}=5$
$\Rightarrow \min \mathrm{b}=3 \times(4+3)(4-3)=21$
16. What is the value of
$\sum_{\substack{1 \leq i<j \leq 10 \\ i+j=\text { odd }}}(\mathrm{i}+\mathrm{j})-\sum_{\substack{1 \leq \leq i<j \leq 10 \\ i+j=\text { even }}}(\mathrm{i}+\mathrm{j})$?
Ans. (55)
Sol. $S=\sum_{\substack{1 \leq i<j \leq 10 \\ i+j \\ i+j=\text { odd }}}(i+j)-\sum_{\substack{1 \leq i<j \leq \leq \leq 10 \\ i+j=\text { even }}}(i+j)$?
$\Rightarrow S=\sum_{1 \leq i<j \leq 10}(-1)^{i+j-1}(i+j)$
$\Rightarrow \mathrm{S}=\frac{1}{2} \sum_{1 \leq \mathrm{i}<\mathrm{j} \leq 10}(-1)^{\mathrm{i}+\mathrm{j}-1}(\mathrm{i}+\mathrm{j}+22-(\mathrm{i}+\mathrm{j}))$
$\Rightarrow S=11 \sum_{1 \leq i<j \leq 10}(-1)^{\mathrm{i}+\mathrm{j}-1}$
Now let us count how many times $i+j$ is even or odd
For $\mathrm{i}+\mathrm{j}=$ even, there are $2 .{ }^{5} \mathrm{C}_{2}=20$ terms
For $\mathrm{i}+\mathrm{j}=$ odd, there are ${ }^{5} \mathrm{C}_{1} \cdot{ }^{5} \mathrm{C}_{1}=25$ terms
$\Rightarrow S=11(-20+25)=55$
17. Triangles ABC and DEF are such that $\angle \mathrm{A}=\angle \mathrm{D}, \mathrm{AB}=\mathrm{DE}=17, \mathrm{BC}=\mathrm{EF}=10$ and $\mathrm{AC}-\mathrm{DF}=12$. What is $\mathrm{AC}+\mathrm{DF}$?
Ans. (30)
Sol. $\mathrm{BL}=\sqrt{\mathrm{FB}^{2}-\mathrm{FL}^{2}}=\sqrt{10^{2}-6^{2}}=8$
DL or $\mathrm{AL}=\sqrt{\mathrm{AB}^{2}-\mathrm{BL}^{2}}=\sqrt{17^{2}-8^{2}}=15$
Now $\mathrm{DF}+\mathrm{AC}=(\mathrm{DL}-\mathrm{FL})+(\mathrm{AL}+\mathrm{LC})$
$=2 \mathrm{AL}=2 \times 15=30$

18. If $a, b, c \geq 4$ are integers, not all equal and $4 a b c=(a+3)(b+3)(c+3)$, then what is the value of $a+b+c$?
Ans. (16)
Sol. $4 \mathrm{abc}=(\mathrm{a}+3)(\mathrm{b}+3)(\mathrm{c}+3)$
$\Rightarrow\left(1+\frac{3}{\mathrm{a}}\right)\left(1+\frac{3}{\mathrm{~b}}\right)\left(1+\frac{3}{\mathrm{c}}\right)=4$
W.L.O.G. let $4 \leq \mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$
$\Rightarrow \frac{1}{\mathrm{a}} \geq \frac{1}{\mathrm{~b}} \geq \frac{1}{\mathrm{c}} \Rightarrow 1+\frac{1}{\mathrm{a}} \geq 1+\frac{3}{\mathrm{~b}} \geq 1+\frac{3}{\mathrm{c}}$
So $\left(1+\frac{3}{a}\right)^{3} \geq 4 \Rightarrow 1+\frac{3}{a} \geq 4^{\frac{1}{3}}$
$\Rightarrow \mathrm{a} \leq \frac{3}{4^{\frac{1}{3}}-1}=4^{2 / 3}+1+4^{1 / 3}<3+1+2$
$\Rightarrow \mathrm{a}<6 \Rightarrow \mathrm{a}=4$ or 5
for $\mathrm{a}=5, \quad\left(1+\frac{3}{\mathrm{~b}}\right)\left(1+\frac{3}{\mathrm{c}}\right)=\frac{5}{2}$
$\Rightarrow\left(1+\frac{3}{\mathrm{~b}}\right)^{2} \geq \frac{5}{2}$
$\Rightarrow \mathrm{b} \leq \frac{3}{\left(\frac{5}{2}\right)^{1 / 2}-1}=2\left(\left(\frac{5}{2}\right)^{1 / 2}+1\right)<2(2+1)=6$
$\Rightarrow \quad b \leq 5 \Rightarrow b=5 \quad($ as $b \geq a)$
$\Rightarrow 1+\frac{3}{\mathrm{c}}=\frac{25}{16} \Rightarrow \mathrm{c}=\frac{16}{3} \notin \mathbb{Z} \Rightarrow \mathrm{a} \neq 5$
For $\mathrm{a}=4,\left(1+\frac{3}{\mathrm{~b}}\right)\left(1+\frac{3}{\mathrm{c}}\right)=\frac{16}{7}$

$$
\left(1+\frac{3}{b}\right)^{2} \geq \frac{16}{7} \Rightarrow b \leq \frac{3}{\frac{4}{\sqrt{7}}-1}=\frac{7}{3}\left(\frac{4}{\sqrt{7}}+1\right)<6
$$

$\Rightarrow \quad b=4$ or 5
for $b=4, \quad c=\frac{49}{5} \notin \mathbb{Z}$
for $b=5, c=7 \Rightarrow a+b+c=4+5+7=16$
19. Let $\mathrm{N}=6+66+666+\ldots+666 \ldots 66$, where there are hundred 6 's in the last term in the sum.

How many times does the digit 7 occur in the number N ?
Ans. (33)
Sol. $\mathrm{N}=6+66+666+\ldots \ldots .+\underbrace{6666 \ldots . .6}_{100}$
$=\frac{6}{9}\left[10+10^{2}+\ldots \ldots . .+10^{100}-100\right]$
$=\frac{6}{9}\left(\frac{10\left(10^{100}-1\right)}{9}-100\right)$
$=\frac{20}{3}\left(\frac{999 \ldots . .9}{9}-10\right)$
$=\frac{20}{3}[\underbrace{111 \ldots . .101}_{98 \text { times }}]$
$=\frac{222 \ldots .2020}{3}$
$=\frac{222 \times 10^{98}+222 \times 10^{95}+\ldots . .+222 \times 10^{5}}{3}+\frac{22020}{3}$
$=\underbrace{74 \times 10^{98}+74 \times 10^{95}+\ldots . .+74 \times 10^{5}}_{32 \text { terms }}+7340$
$=\underbrace{740740 \ldots \ldots .740}_{32 \text { Blocks of } 740} 7340$
$\Rightarrow 33$ sevens
20. Determine the sum of all possible positive integers n, the product of whose digits equals $n^{2}-15 n-27$.
Ans. (17)
Sol. Let product of digits of n be $P(n)$
Claim: $\mathrm{P}(\mathrm{n}) \leq \mathrm{n}$
Proof: Let $\mathrm{n}=\mathrm{a}_{\mathrm{m}} 10^{\mathrm{m}}+\mathrm{a}_{\mathrm{m}} 10^{\mathrm{m}-1}+\ldots .+\mathrm{a}_{0} \geq \mathrm{a}_{\mathrm{m}} 10^{\mathrm{m}} \geq \mathrm{a}_{\mathrm{m}} 9^{\mathrm{m}} \geq \mathrm{a}_{\mathrm{m}} \mathrm{a}_{\mathrm{m}-1} \ldots \mathrm{a}_{0}$
$\Rightarrow \mathrm{n} \geq \mathrm{P}(\mathrm{n})$
Now $n^{2}-15 n-27 \leq n$
$\Rightarrow \mathrm{n}^{2}-16 \mathrm{n}-27 \leq 0 \Rightarrow(\mathrm{n}-8)^{2} \leq 91$
$\Rightarrow \mathrm{n} \leq 8+\sqrt{91}<18$
Also $\mathrm{P}(\mathrm{n}) \geq 0$
$\Rightarrow \mathrm{n}^{2}-15 \mathrm{n}-27 \geq 0$
$\Rightarrow \mathrm{n}^{2}-15 \mathrm{n}+56 \geq 83$
$\Rightarrow(\mathrm{n}-7)(\mathrm{n}-8) \geq 83$
$\Rightarrow(\mathrm{n}-7)^{2}>(\mathrm{n}-7)(\mathrm{n}-8) \geq 83$
$\Rightarrow(\mathrm{n}-7)>\sqrt{83}$
$\Rightarrow \mathrm{n}>7+\sqrt{83}>16$
From (i) and (ii) $n=17$, which satisfies the given condition \Rightarrow Required sum $=17$.
21. Let $A B C$ be an acute-angled triangle and let H be its orthocentre. Let G_{1}, G_{2} and G_{3} be the centroids of the triangles $\mathrm{HBC}, \mathrm{HCA}$ and HAB , respectively. If the area of triangle $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$ is 7 units, what is the area of triangle ABC ?

Ans. (63)

Sol.

Given
$\frac{\mathrm{HG}_{1}}{\mathrm{HD}}=\frac{\mathrm{HG}_{2}}{\mathrm{HE}}=\frac{2}{3}$
$\Rightarrow \mathrm{G}_{1} \mathrm{G}_{2} \| \mathrm{DE}$
Similarly $G_{1} G_{3} \|$ DF and $G_{2} G_{3} \|$ FE
$\Rightarrow \quad\left[\mathrm{HG}_{1} \mathrm{G}_{2}\right]=\frac{4}{9}[\mathrm{HDE}]$
and $\left[\mathrm{HG}_{1} \mathrm{G}_{3}\right]=\frac{4}{9}[\mathrm{HFD}]$
and $\left[\mathrm{HG}_{2} \mathrm{G}_{3}\right]=\frac{4}{9}[\mathrm{HFE}]$
From (1) + (2) - (3), we get,
$\left[\mathrm{HG}_{1} \mathrm{G}_{2}\right]+\left[\mathrm{HG}_{1} \mathrm{G}_{3}\right]-\left[\mathrm{HG}_{2} \mathrm{G}_{3}\right]=\frac{4}{9}([\mathrm{HDE}]+[\mathrm{HFD}]-[\mathrm{HFE}])$
$\Rightarrow\left[\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}\right]=\frac{4}{9}[\mathrm{DEF}]$
$\Rightarrow 4[\mathrm{DEF}]=9\left[\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}\right]$
$\Rightarrow[\mathrm{ABC}]=9 \times 7=63$ (as $\triangle \mathrm{DEF}$ is median triangle of $\triangle \mathrm{ABC}$)
22. A positive integer k is said to be good if there exists a partition of $\{1,2,3, \ldots .20\}$ in to disjoint proper subsets such that the sum of the numbers in each subset of the partition is k. How many good numbers are there?
Ans. (06)
Sol. Let us partition it in n part and each part has $s u m=k$ then,
$\mathrm{nk}=1+2+3+\ldots+20$
$\Rightarrow \mathrm{nk}=210$
$\Rightarrow \mathrm{k} \mid 210$
Also k must be ≥ 20, (as 20 will be present in some partition)
Now, $210=2 \times 3 \times 5 \times 7$
So, Proper divisors of 210 are $1,2,3,5,6,7,10,14,15,21,30,35,42,70,105$
$\Rightarrow \mathrm{k}$ can be 21, 20, 35, 42, 70, 105
For $\mathrm{k}=21$, we have $(1,20),(2,19), \ldots(10,11)$
$\Rightarrow 21$ is good number
For $\mathrm{k}=42$, join two-two pairs of above
For $\mathrm{k}=105$, join five-five pairs of above
$\Rightarrow 42$ and 105 are also good numbers.
For $\mathrm{k}=30$, we have
$\{20,10\},\{19,11\},\{18,12\},\{17,13\},\{16,14\},\{15,9,6\},\{1,2,3,4,5,7,8\}$
$\Rightarrow \mathrm{k}=30$ is also a good number
For $\mathrm{k}=35$, we have
$\{5,9,11,10\}\{6,7,8,14\},\{4,15,16\},\{17,18\},\{2,13,20\},\{1,3,12,19\}$
$\mathrm{k}=35$ is also a good number.
For $\mathrm{k}=70$
Join two-two pairs of above
$\Rightarrow \mathrm{k}=70$ is a good number
Hence, there are total 6 good number.
23. What is the largest positive integer n such that $\frac{a^{2}}{\frac{b}{29}+\frac{c}{31}}+\frac{b^{2}}{\frac{c}{29}+\frac{a}{31}}+\frac{c^{2}}{\frac{a}{29}+\frac{b}{31}} \geq n(a+b+c)$ holds
for all positive real numbers a, b, c

Ans. (14)
Sol. We know that for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ real numbers and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ positive reals, we have
$\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq \frac{(a+b+c)^{2}}{x+y+z}$; where equality holds for $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$
$\therefore \frac{a^{2}}{\frac{b}{29}+\frac{c}{31}}+\frac{b^{2}}{\frac{c}{29}+\frac{a}{31}}+\frac{c^{2}}{\frac{a}{29}+\frac{b}{31}} \geq \frac{(a+b+c)^{2}}{\frac{b}{29}+\frac{c}{31}+\frac{c}{29}+\frac{a}{31}+\frac{a}{29}+\frac{b}{31}}=\frac{(a+b+c)^{2}}{\frac{a+b+c}{29}+\frac{a+b+c}{31}}$
$=\frac{(a+b+c)^{2}}{(a+b+c)\left[\frac{1}{29}+\frac{1}{31}\right]}$
$=(a+b+c)\left(\frac{899}{60}\right)$
$=\left(14+\frac{59}{60}\right)(\mathrm{a}+\mathrm{b}+\mathrm{c})$
$\geq \mathrm{n}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
\Rightarrow Largest positive integer $\mathrm{n}=14$
24. If N is the number of triangles of different shapes (i.e. not similar) whose angle are all integers (in degrees), what is $\mathrm{N} / 100$?
Ans. (27)
Sol. Let the angles be $\lambda_{1}, \lambda_{2}, \lambda_{3}$
$\lambda_{1}+\lambda_{2}+\lambda_{3}=180^{\circ}$
Number of positive solution are ${ }^{180-1} \mathrm{C}_{3-1}={ }^{179} \mathrm{C}_{2}$
But some solutions are counted more than once like,
11178
$\begin{array}{ll}2 & 2\end{array}$
$\begin{array}{lll}3 & 3 & 174\end{array}$
$59 \quad 59 \quad 62$
these are 88 solutions each of these are counted 3 times
616158
$6262 \quad 56$
$8989 \quad 2$
Every solution with $\lambda_{1} \neq \lambda_{2} \neq \lambda_{6}$ is counted 6 times.
$\lambda_{1}=\lambda_{2}=\lambda_{3}=60$ counted only once
$\Rightarrow \mathrm{N}=\frac{1}{6} \underbrace{\left({ }^{179} \mathrm{C}_{2}-3 \times 88-1\right)}_{\text {scalene }}+\underbrace{88}_{\text {isosceles but not equilateral }}+\underbrace{1}_{\text {equilateral }}$
$\Rightarrow \mathrm{N}=2700 \Rightarrow \frac{\mathrm{~N}}{100}=27$
25. Let T be the smallest positive integer which, when divided by $11,13,15$ leaves remainders in the sets $\{7,8,9\},\{1,2,3\},\{4,5,6\}$ respectively. What is the sum of the squares of the digits of T ?

Ans. (81)
Sol. $\operatorname{LCM}(11,13,15)=2145$
$\operatorname{LCM}(13,15)=195$
$\operatorname{LCM}(11,15)=165$
$\operatorname{LCM}(11,13)=143$
Let us consider $y_{1}, y_{2}, y_{3} \in \mathbb{N}_{0}$ such that $195 y_{1} \equiv 1(\bmod 11) ; 165 y_{2} \equiv 1(\bmod 13)$ and $143 y_{3} \equiv 1(\bmod 15)$
$\Rightarrow y_{1} \equiv 7(\operatorname{mode} 11) ; \mathrm{y}_{2} \equiv 3(\bmod 13)$ and $\mathrm{y}_{3} \equiv 2(\bmod 15)$
Now using Chinese remainder theorem, we get
$\mathrm{T} \equiv \mathrm{a}_{1} \mathrm{y}_{1} 195+\mathrm{b}_{1} \mathrm{y}_{2} 165+\mathrm{c}_{1} \mathrm{y}_{3} 143(\bmod 2145)$
where $a_{1} \in\{7,8,9\}, b_{1} \in\{1,2,3\}, c_{1} \in\{4,5,6\}$
Let $\mathrm{a}_{1}=\mathrm{a}+8, \mathrm{~b}_{1}=\mathrm{b}+2, \mathrm{c}_{1}=\mathrm{c}+5$
where $a, b, c \in\{-1,0,1\}$
$\mathrm{T} \equiv 1365(\mathrm{a}+8)+495(\mathrm{~b}+2)+286(\mathrm{c}+5)(\bmod 2145)$
$\mathrm{T} \equiv 13340+1365 \mathrm{a}+495 \mathrm{~b}+286 \mathrm{c}(\bmod 2145)$
or $T \equiv 470-780 \mathrm{a}+495 \mathrm{~b}+286 \mathrm{c}(\bmod 2145)$
Now we can see that min $\mathrm{T} \leq 470$
for $\mathrm{a}=-1$ and any choice of $\mathrm{b} \neq-1, \mathrm{c} \neq-1$ we get $\mathrm{T}>470$
for $\mathrm{a}=\mathrm{b}=\mathrm{c}=-1, \mathrm{~T}=469 \Rightarrow \mathrm{~T} \leq 469$
for $\mathrm{a}=1$ and $\mathrm{b} \neq 1, \mathrm{~T}>469$
for $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{~T} \equiv 185+286 \mathrm{c}(\bmod 2145)$
$\Rightarrow \mathrm{T} \leq 185$ (for $\mathrm{c}=0$ equality)
Finally $\mathrm{a}=0, \mathrm{~T} \equiv 470+495 \mathrm{~b}+286 \mathrm{c}(\bmod 2145)$
$\mathrm{T} \equiv 470+495 \mathrm{~b}+286 \mathrm{c}(\bmod 2145)$
for $\mathrm{b}=0, \mathrm{c}=-1, \mathrm{~T} \equiv 184(\bmod 2145)$
$\Rightarrow \mathrm{T} \leq 184$ (Equality for $\mathrm{a}=0, \mathrm{~b}=0, \mathrm{c}=-1$)
In case of $\mathrm{a}=0$ and $(\mathrm{b}, \mathrm{c}) \neq(0,-1), \mathrm{T}>184$
We get smallest $T=184$
Now required sum $=1^{2}+8^{2}+4^{2}=81$

Aliter :

$\mathrm{T} \equiv\{4,5,6\}(\bmod 15)$
or $T \equiv\{19,20,21\},\{34,35,36\},\{49,50,51\},\{64,65,66\},\{79,80,81\},\{94,95,96\},\{109,110,111\}$,
$\{124,125,126\},\{139,140,141\},\{154,155,156\},\{169,170,171\},\{184,185,186\}(\bmod 15)$
Now by direct checking we get smallest
$\mathrm{T}=184$
\Rightarrow Required sum $=1^{2}+8^{2}+4^{2}=81$
26. What is the number of ways in which one can choose 60 unit squares from a 11×11 chessboard such that no two chosen squares have a side in common?

Ans. (62)
Sol.

Let us colour each unit square alternatively as black and white there will be 61 non adjecent black squares and 60 non adjacent white squares

We can't select 60 non adjacent squares in combination of black and white both. As if we select one black, atleast 2 white we can't select. Suppose we select k black then atleast k +1 whites (adjacent to these blacks) we can't select implies we left with atmost $59-\mathrm{k}$ white squares and we need $60-$ k white which is not possible!
So in order to selected 60 non adjacent squares we need to select all black or all white this can be
done in $\binom{61}{60}+\binom{60}{60}=61+1=62$ ways
27. What is the number of ways in which one can colour the squares of a 4×4 chessboard with colous red and blue such that each row as well as each column has exactly two red squares and two blue squares?

Ans. (90)
Sol. Each row can be coloured in any one of the following six ways
RBRB, RRBB, RBBR, BBRR, BRRB and BRBR
First two rows can be coloured in $6 \times 6=36$ ways
Let us divide all 36 ways in three cases.
(i) First and second row are identical :

There are 6 such cases then last two rows can be painted in only 1 way.
$\Rightarrow \quad$ Number of such ways $=6$
(ii) First and second row do not match at any place :

Colour first row by any one of the 6 ways and switch colour in second row for corresponding squares.
\Rightarrow First two can be coloured in 6 ways.

Now $3^{\text {rd }}$ row can be painted in any one of the 6 ways and final row in one way.
$\Rightarrow 6 \times 6=36$ ways in this case
(iii) First and second row match exactly at two places:

There are $36-6-6=24$ such cases
The column in which two squares are of same colour (in first two row) can be painted in only one way (in third and fourth row) and the remaining two squares of third row can be painted in two ways then last row will be in one way.
$\Rightarrow 24 \times 2=48$ ways in this case.
Hence total ways are $6+36+48=90$ ways.
28. Let N be the number of ways of distributing 8 chocolates of different brands among 3 children such that each child gets at least one chocolate, and no two children get the same number of chocolates. Find the sum of the digits of N.
Ans. (24)
Sol. There are two ways to partition 8 in unequal size which are $1+2+5$ and $1+3+4$.
Hence total ways of distribution $=\left(\frac{8!}{1!2!5!}+\frac{8!}{1!3!4!}\right) \times 3!=2688$ ways
\Rightarrow sum of digits $=2+6+8+8=24$
29. Let D be an interior point of the side $B C$ of a triangle $A B C$. Let I_{1} and I_{2} be the incentres of triangles $A B D$ and $A C D$ respectively. Let $A I_{1}$ and $A I_{2}$ meet $B C$ in E and F respectively. If $\angle \mathrm{BI} \mathrm{E}=60^{\circ}$, what is the measure of $\angle \mathrm{CI}_{2} \mathrm{~F}$ in degrees?

Ans. (30)
Sol. Let $\angle \mathrm{CI}_{2} \mathrm{~F}=\theta, \angle \mathrm{BAE}=\mathrm{x}=\angle \mathrm{EAD}$
and $\angle \mathrm{DAF}=\mathrm{y}=\angle \mathrm{FAC}$
$\Rightarrow \angle \mathrm{A}=2 \mathrm{x}+2 \mathrm{y}$ or $\mathrm{x}+\mathrm{y}=\frac{\angle \mathrm{A}}{2}$
$\Rightarrow \quad \angle \mathrm{EAF}=\frac{\angle \mathrm{A}}{2}$

Now $\angle \mathrm{AEF}=\frac{\angle \mathrm{B}}{2}+60^{\circ}$
and $\angle \mathrm{AFE}=\theta+\frac{\angle \mathrm{C}}{2}$
In $\triangle \mathrm{AEF}$,
$\left(\frac{\angle \mathrm{B}}{2}+60^{\circ}\right)+\left(\theta+\frac{\angle \mathrm{C}}{2}\right)+\frac{\angle \mathrm{A}}{2}=180^{\circ}$
or $\theta+\frac{\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}}{2}+60^{\circ}=180^{\circ}$
$\Rightarrow \theta=180^{\circ}-150^{\circ}=30^{\circ}$
i.e. $\angle \mathrm{CI}_{2} \mathrm{~F}=30^{\circ}$
30. Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial in which a_{i} is a non negative integer for each $\mathrm{i} \in(0,1,2,3, \ldots, n)$. If $P(1)=4$ and $P(5)=136$, what is the value of $P(3)$?

Ans. (34)
Sol. $\mathrm{P}(5)=\mathrm{a}_{0}+5 \mathrm{a}_{1}+25 \mathrm{a}_{2}+125 \mathrm{a}_{3}+625 \mathrm{a}_{4}+\ldots+\mathrm{a}_{\mathrm{n}} 5^{\mathrm{n}}=136$ as each $a_{1} \in \mathbb{N}_{0}$, if any $a_{i} \geq 1$ for $i \geq 4$, then LHS >136
$\Rightarrow a_{4}=a_{5}=a_{6}=\ldots=a_{n}=0$
$\Rightarrow \mathrm{a}_{0}+5 \mathrm{a}_{1}+25 \mathrm{a}_{2}+125 \mathrm{a}_{3}=136$
Also a_{3} can be 0 or 1 only
Now $P(1)=a_{1}+a_{1}+a_{2}+a_{3}=4$
$\Rightarrow a_{0}, a_{1}, a_{2}, a_{3} \in\{0,1,2,3,4\}$
If $a_{3}=0$, then

$$
\mathrm{a}_{0}+5 \mathrm{a}_{1}+25 \mathrm{a}_{2} \leq 4+20+100=124<136
$$

$\Rightarrow a_{3}=1$
$\Rightarrow \mathrm{a}_{0}+5 \mathrm{a}_{1}+25 \mathrm{a}_{2}=11$ (from (1))
$\Rightarrow a_{2}=0$
$\Rightarrow \mathrm{a}_{0}+5 \mathrm{a}_{1}=11$
Also from (2) $a_{0}+a_{1}=3$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{0}=1$
Hence $P(x)=1+2 x+x^{3}$
$\Rightarrow P(3)=1+6+27=34$

