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1. Let ABC be a non-equilateral triangle with integer sides. Let D and E be respectively the mid-points

BC and CA ; let G be the centroid of triangle ABC. Suppose D, C, E, G are concyclic. Find the least

possible perimeter of triangle ABC.

Sol. BD.BC = BG.BE
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From (1) and (2)
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 (From (1) and (2))

2 2 22c a b ...(3)

a2 +  b2 must be even

a,  b  must  be  of  same  parity.

Now c2 = 
2 22 2a b a b a b
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2
 = y N

(as a, b of same parity)

c2 = x2 + y2
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For y = 0, c = x

a = b and c = 
a b

2

c = a = b equilateral  which is not the case.

y > 0

Now c, x, y are sides of a right angle triangle and smallest pythagorean triple is 5, 4, 3 ; second

smallest 5, 12, 13

For 5, 4, 3 we have

c = 5, 
a b

2
 = 4, 

a b

2
 = 3

a = 7, b = 1

Not possible

For 13, 12, 5 we have

c = 13, 
a b

2
= 12, 

a b

2
 = 5

c = 13 and a = 17, b = 7

as 17 < 7 + 13

least perimeter of ABC will be 7 + 13 + 17 = 37

2. For any natural number n, consider a 1 × n rectangular board made up of n unit squares. This is

covered by three types of tiles 1 × 1 red tile, 1 × 1 green tile and 1 × 2 blue domino. (For example, we

can have 5 types of tiling when n = 2 : red-red; red-green; green-red; green-green and blue.) Let tn

denote the number of ways of covering 1 × n rectangular board by these three types of tiles. Prove that

tn divides t2n+1.

Sol. Let rn,  gn,  bn respectively be the number of 1 × n tiles that end with a red, green and blue tiles. Clearly,

tn = rn + gn + bn. To get a 1 × (n + 1) tile ending in a red tile, we can append a 1 × 1 red tile to any of the

above three. Hence rn+1= rn + gn + bn. Similarly, gn+1 = rn + gn + bn. To get bn+1, we need to append a blue

tile to a 1 × (n – 1) tile. Thus bn+1 = rn–1 + gn–1 + bn–1.

Thus

tn+1 = rn+1 + gn+1 + bn+1

= (rn + gn + bn) + (rn + gn + bn) + (rn–1 + gn–1+ bn–1)

= tn + tn–1

Thus we have recurrence relation tn+1 – 2tn –  tn–1= 0 whose characteristic equation is 2 – 2y – 1 = 0.

Thus has characteristic roots 1 2.  Thus n n n n
nt A(1 2) B(1 2) A B ,  where 1 2  and

1 2.  Since t1 = 2 and t2 = 5, we get A
2 2

 and B .
2 2

 Thus

n 1 n 1

nt
2 2
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Now,
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Note that

n 1 n 1
n 1 n 1 n 1 n 1 2

2 41 2 1 2 2 1 .2 .2 ...

is an integer and t2n + 1 is divisible by tn.

3. Let 1 and 2 be two circles with respective centres O1 and O2 intersecting in two distinct points A and

B such that O1AO2 is an obtuse angle. Let the circumcircle of triangle O1AO2 intersect 1 and 2

respectively in points C( A) and D(  A). Let the line CB intersect in 2 in E; let the line DB intersect

1 in F. Prove that the points C, D, E, F are concyclic.

Sol. Claim : CB passes through O2 and DB through O1

Proof : For circle 1, AO1O2 = 
1

2
AOO1B = ACB – (1)

Also for circle 3 AO1O2 = ACO2          (2)

From (1) and (2) we set

ACB = ACO2 CB || CO2

CB passes through O2

Similarly BD, passes through O1

Now BAE = 90° (as  BF diameter  of  1)
EF A

O2
O1

B
C

D

and BAF = 90° (as BF diameter of 1)

FAE are  collinear  and  ||  to  O1O2

Let FEC =  O1O2B = (as O1O2|| FE)

or  O1O2C = 

O1D2C =  (on 3)

or FDC = 

FEC = = FDC

CDEF are concyclic.
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4. Find all polynomials with real coefficients P(x) such that P(x2 + x + 1) divides P(x3 – 1).

Sol. Possibility (1) : P(x) is constant = c then

P(x3 – 1) = c and P(x2 + x + 1) = c and we are done.

Let P(x) be non contant polynomial.

As 2 3P(x x 1) | P(x 1)

 P(x3 – 1) = P(x2 + x + 1) Q(x) where

Q(x) in some polynomial in x.

 P(x – 1)(x2 + x + 1) = P(x2 + x + 1) Q(x)

 Whenever x2 + x + 1 in a root of P(x),

(x – 1) (x2 + x + 1) in also a root ...................... (1)

Let  be a root of P(x) such that | | be maximum.

Now take x2  + x + 1 =    x = x1x2 = (say),

roots with x1 + x2 = –1,

 Atleast one root out of x1,  x2 will have distance more than 1 (from '1').

Let 1 2 1| x 1 | | x 1 x

 2 1| x 1 | | 1 x 1|  1 1| 3 (x 1) | | 3 | x 1| 2

2| x 1 | 1 ...........(2)

From one we have (x2 – 1) (x2
2 + x2 + 1) = (x2 – 1)  (say) is another root of P(x) = 0.

Here 2 2| B | | (x 1) | | x 1| | | | |

Which is a contradiction  |  |  = 0   = 0

 All root of non contant polonomial must be '0'.

  P(x) = a.xn, a  R, n N.

An other solution p(x) = c, c  R.

5. There are n 3 girls in a class sitting around a circular table, each having some apples with her. Every

time the teacher notices a girl having more apples than both of her neighbors combined, the teacher

takes away one apple from that girl and gives one apple each to her neighbors. Prove that this process

stops after a finite number of steps. (Assume that the teacher has an abundant supply of apples.)

Sol. Let ai be number of apples held by girl i

i = 1, 2, .........n

S1 = a1 + a2 +.........+ an

Q1 =  a1
2 +  a2

2 +............+an
2

ak > ak+1 + ak–1 some k ak –  ak+1 –  ak–1  1
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Then after 1st step, S2 = S1 + 1 and Q2 Q1 + 1

As (ak – 1)2 + (ak+1 + 1)2 + (ak–1 + 1)2 –  ak
2 + a2

k+1 + a2
k–1

= 2(ak+1 + ak–1 – ak) + 3  1

Q2 – Q1 1 Q2 1 + Q1

After r steps, Sr = S1 + r and tr  t1 + r

Now apply power mean inequality after each step

1/ 22 2 2
1 2 n 1 2 na a ........ a a a ...... a

n n

then after r step we will be having :

1/ 2
1 1Q r S r
n n

n(Q1 + r) (S1 + r)2

r2 – (2S1 – n)r – n Q1 0 .......(A)

as S1,  n, Q1 is fix and r is variable we know that Eq. (A) can be true for finitly many r after that it will

be false process stops after finite step.

6. Let N denote the set of all natural numbers and let f : N N be a function such that

(a) f(mn) = f(m)f(n) all m, n in N ;

(b) m + n divides f(m) + f(n) for all m, n in N.

Prove that there exists an odd natural number k such that f(n) = nk for  all  n  in  N.

Sol. P(m, n) : f(mn) = f(m).f(n); Q(m, n) : m + n | (f(m) + f(n))

P(1, 1) : f(11) = f(1). f(1)  f(1) = 1  as f  N

Q(2, 2) : 2 + 2 | (f(2) + f(2))   2 | f(2)

 f(2)  = 2k.q , q some odd number k  N.

If possible let q > 1 then there will exist a prime p such that p|q

 p = odd prime.

Also we set p | f (2)

p 1 P 1 p 1
P 2. : f(p 1) f 2. f(2).f

2 2 2

 P | f(p – 1)

Q (1, p – 1) : 1 + (p – 1) | (f(1) + f (p – 1)

  p | (1 + f(p – 1)  p | 1
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Which is a contradiction  q = 1  f(2)  = 2k

 (2, 1) : (2 + 1) | (f(2) + f(1))  3 | (2k + 1)

 2k + 1  0 (mod 3)

or (–1)k + 1 0 (mod 3)

 k = odd.

Also from f(mn) = f(m).f(n)

  
k k k

m timesm times m times

f (2.2.2.....2) f(2).f(2)....f(2) 2 .2 ...2

f(2m) = (2k)m = 2km

Now Q(n, 2m) :   (n + 2m) | (f(n) + f(2m))

i.e. (n + 2m) | (f(n) + 2km) ....(1)

as (x + y) |  (xk + yk) for k = odd

n + 2m |  (nk + (2m)k) ...(2)

From (1) and (2) we get

(n + 2m) | (f(n) + 2km) – (nk + 2km)) + m  N

(n + 2m) | (f(n) – nk)  m N

f(n) – nk has infinite divisors

f(n) – nk = 0

f(n) = nk for some odd k N

Alternate solution

The answer is f(x) = xk for all x N, which k is an odd positive integer.

Throughout the solution, we'll donote f(mn) = f(m) f(n) as (*, m, n)

and m + n | f(m) + f(n) as (**, m, n).

(*, 1, 1) gives f(1) = 1

Claim 1 : f(2) = 2k, and k is an odd positive integer.

Proof of clam 1 : Assume the contrary that for an odd prime p, p|f(2). Then by *, we get P | f(x) for all

x even. Then since p – 1 is even we get p | f(p – 1). Now (**, p – 1, 1) gives p – 1 + 1 | f(p – 1) + f(1)

p | f(1). Contradictory to f(1) = 1. This proves f(2) = 2k.

Now (**, 2, 1) gives 2 + 1 | f(2) + 1 3 | 2k + 1 k is odd. This proves Claim 1.

Claim 2 : f(p)  = pm for any odd prime p.

Proof of claim 2 : Assume the contrary that for another prime q p, q | f(p). Then by *, we get q | f(x)

for all x which are multiplies of p.

We know there is a multiple of p which gives –1 as a residue when divided by q. Let that multiple of

p be px, i.e., px –1 (mod q).

Now (**, px, 1) gives px + 1 | f(px) + f(1) and since we know q | px + 1 and q | f(px), this gives q | f(1).

Contradicatory to f(1) = 1. This proves claim 2.
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Claim 3 : If f(2) = 2k and f(p) = pm for an odd prime p, then k = m

Proof of claim 3 : Assume the contrary that k m. Then c = |k – m| > 0.

Take any positive integer a. By *, we know f(2a)  =  2ak.

(**, 2a, p) gives 2a + p | f(2a) + f(p) 2a + p | 2ak + pm 2a + p | 2ak + pk – pk + pm.

Since k is odd, we have 2a + p | 2ak + pk, which means 2a + p | pm – pk 2a + p | pc –  1

since gcd(2, p) = 1

Now notice that we got 2a + p|pc – 1 for all positive integers a. But if we take 'a' large enough, clearly

this will be false. Contradiction. Then c = |k – m| = 0. This proves claim 3.

So,  we have proved f(p)  = pk for  all  primes p,  where k is  an odd integer.  By * this  means f(x)  = xk for

all positive integers x, as desired. This completes the proof.


